Elevated Circulating Sclerostin Concentrations in Individuals With High Bone Mass, With and Without LRP5 Mutations
نویسندگان
چکیده
CONTEXT The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.
منابع مشابه
Circulating sclerostin in children and young adults with heritable bone disorders.
CONTEXT Sclerostin is an inhibitor of bone formation and is an important determinant of bone mass. The role of sclerostin in heritable metabolic bone disorders has not been studied in detail. OBJECTIVE We evaluated serum sclerostin levels in patients with X-linked hypophosphatemic rickets (XLH) and osteogenesis imperfecta (OI) and analyzed the relationship of circulating sclerostin concentrat...
متن کاملSclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome.
Osteoporosis pseudoglioma syndrome (OPPG) is a rare genetic disease that produces debilitating effects in the skeleton. OPPG is caused by mutations in LRP5, a WNT co-receptor that mediates osteoblast activity. WNT signaling through LRP5, and also through the closely related receptor LRP6, is inhibited by the protein sclerostin (SOST). It is unclear whether OPPG patients might benefit from the a...
متن کاملProstaglandin E2 Signals Through PTGER2 to Regulate Sclerostin Expression
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal...
متن کاملSclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling.
The loss of the SOST gene product sclerostin leads to sclerosteosis characterized by high bone mass. In this report, we found that sclerostin could antagonize canonical Wnt signaling in human embryonic kidney A293T cells and mouse osteoblastic MC3T3 cells. This sclerostin-mediated antagonism could be reversed by overexpression of Wnt co-receptor low density lipoprotein receptor-related protein ...
متن کاملSclerostin and Bone Aging: A Mini-Review.
Sclerostin, mainly produced by osteocytes, is now considered a major regulator of bone formation. Identified from patients with a low bone mass, sclerostin inhibits the Wnt pathway by binding to LRP5/6 and subsequently increases bone formation. Sclerostin may also play a role in the mediation of systemic and local factors such as calcitriol, PTH, glucocorticoids and tumor necrosis factor-alpha....
متن کامل